
Journal of Magnetic Resonance 204 (2010) 26–36
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Blind separation of electron paramagnetic resonance signals
using diversity minimization q

Xiansheng Guo a,b, Chunqi Chang a, Edmund Y. Lam a,*

a Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
b Department of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

a r t i c l e i n f o
Article history:
Received 31 July 2009
Revised 23 December 2009
Available online 11 February 2010

Keywords:
Blind source separation
Non-negative sources
Diversity measures
Electron Paramagnetic Resonance
spectroscopy
1090-7807/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jmr.2010.01.014

q This work was in part supported by the Universit
10208648 at the University of Hong Kong.

* Corresponding author.
E-mail address: elam@eee.hku.hk (E.Y. Lam).
URL: http://www.eee.hku.hk/~elam (E.Y. Lam).
a b s t r a c t

This paper presents a method for the blind separation of Electron Paramagnetic Resonance (EPR)
spectroscopy signals that can aid in the detection of free radicals in living organisms. Observed EPR sig-
nals are often mixtures of source signals that are approximately ‘‘sparse”, with a small number of narrow
segments of the signal much larger than the remaining parts. We develop a method to separate the
sources through minimizing a p-norm-like diversity measure under some mild assumptions which are
generally valid for EPR signals. Simulations demonstrate that the proposed method performs well on
EPR signal separation, with better robustness to noise compared to other techniques.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Electron Paramagnetic Resonance (EPR) spectroscopy is an
effective method for quantifying free radicals, i.e., chemical species
that have unpaired electron(s), in living organisms. Since such mol-
ecules are paramagnetic, EPR, similar to the more widely used nu-
clear magnetic resonance (NMR), can be used to detect the
response of the unpaired electrons under a changing magnetic
field. This EPR signal can then be used to quantify the amount of
free radicals in human and animal tissues. More recently, the tech-
nique of EPR spectroscopy has been further developed to be a med-
ical imaging technique called electron paramagnetic resonance
imaging (EPRI) [1,2], as analog to the magnetic resonance imaging
(MRI) that evolved from nuclear magnetic resonance spectroscopy.

Free radicals play important roles in living organisms. For exam-
ple, the free radical nitric oxide (NO) is an important neural transmit-
ter. More often than not, free radicals have adverse effects on living
tissues. The unpaired electrons have a strong tendency to attract
other electrons to pair them, and such a property makes free radicals
chemically very active, leading to oxidation reactions with other
molecules in the tissue. However, this should be avoided since it is
a major cause of aging. Therefore, the quantification of free radicals
in living tissues is important to biomedical engineering [3].
ll rights reserved.
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1.1. EPR signal analysis

One major difficulty in quantitative analysis of free radicals is
that in living tissues there are always several different free radicals
that cannot be easily measured separately. For a real EPR measure-
ment, it is often a mixture of the signals generated from these mul-
tiple free radical species. Therefore, there is a need to develop an
effective computational algorithm to estimate the individual EPR
spectra of each free radical from their mixture, which is very often
the only available measurement. Traditional approach matches the
mixture manually to the spectra of all known and possible pure
components, which is very ineffective and depends highly on the
contents of the component spectra. It has been observed that mul-
tiple measurements, which contain different proportions of mixing
components, can bring additional information and thus has been
utilized in [4] to get improved result. However, it still requires a
priori information concerning the shapes of the component spectra.
Given multiple mixtures with distinct compositions such as the
setting in [4], it is possible to separate them without prior knowl-
edge on the shapes of the pure components using, for example, the
self-modeling technique proposed in [5,6], which is basically a
principal component analysis (PCA) with post-processing based
on a single peak or symmetric assumption.

Furthermore, real organic free radicals always have more com-
plicated EPR spectra, and their concentrations in biological systems
are so low that the spectra are deemed quite noisy. Research has
found that the self-modeling technique may not work well for sep-
arating free radicals with complicated spectra, as evidenced in the
study of [7] for separating the spectra of superoxide and hydroxyl.
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On the other hand, the same study argues that determining com-
ponent EPR spectra from measurement mixtures can be considered
a blind source separation (BSS) problem, and it applies some pop-
ular BSS algorithms to EPR spectra separation for the first time
with reasonably good results [7]. Yet, because conventional BSS
methods’ assumption of independence of source signals are not
strictly valid for EPR signals, the source spectra cannot be perfectly
determined with established techniques. In [8], a new BSS method
is developed that uses the fact that EPR spectra are generally
sparse. It is demonstrated that in many cases the pure source spec-
tra can be determined by this novel sparse component analysis
method. However, a drawback is that it is not very scalable, and
therefore with a large number of free radicals the computational
time can be very high. Therefore, in this paper we aim to develop
a new BSS method to determine the pure component spectra from
EPR mixtures that is computationally scalable and does not require
independence of the sources. For this purpose, note that EPR spec-
tra are naturally sparse and non-negative, which we will elaborate
further in Section 2.
1.2. Non-negative blind source separation techniques

Blind separation of non-negative sources arises in many appli-
cations of signal processing, ranging from biomedical imaging
(such as electroencephalogram (EEG) [9] and magnetoencephalo-
gram (MEG) [10]), hyperspectral imaging, to analytic chemistry
[11,12]. The word ‘‘blind” refers to the fact that we do not know
the mixing matrix, just as in blind deconvolution that we do not
know the impulse response of a linear time-invariant system
[13]. Typical methods include the non-negative independent com-
ponent analysis (nICA) [14] and non-negative matrix factorization
(NMF) [15]. The nICA method assumes that the source signals are
non-negative and mutually independent, while NMF decomposes
the observation matrix into a product of two non-negative matri-
ces with one serving as the estimate of the sources and the other
as the mixing matrix [16]. However, neither of them is suitable
for EPR signal separation since nICA requires independence of
source spectra while the decomposition of NMF is not unique.

With essentially the same assumption of sparse and local domi-
nance as in [8], and non-negativity, the two algorithms named
NMF with sparse constraints (NMFSC) [17] and convex analysis of
mixtures of non-negative sources (CAMNS) [18] have been devel-
oped recently. By introducing the concept of an affine hull, the true
source vectors can be found from its extreme points in CAMNS. No-
tice that NMFSC exploits only the sparseness and CAMNS only the lo-
cal dominance of the source signals. In this paper we aim to develop a
new method that exploits both aspects that are appropriate for EPR
signals. The method basically is to minimize a diversity measure, ‘p

norm (where 0 < p 6 1) of the source spectra.
1.3. Organization

This paper is organized as follows. In Section 2, the problem for-
mulation is presented, followed by the derivation of the diversity
minimization approach to BSS of non-negative sparse sources that
are locally dominant. Simulation results for both randomly gener-
ated non-negative sources and real EPR signals are then presented
in Section 3. Finally, some concluding remarks are given in Section 4.
2. Problem formulation

Assume that there are N EPR signal sources, denoted
s1; s2; . . . ; sN , which are mixed together to form M mixtures, de-
noted y1; y2; . . . ; yM . If we let
s ¼

s1

s2

..

.

sN

2
66664

3
77775 and y ¼

y1

y2

..

.

yM

2
66664

3
77775;

Then the two are related by the equation

y ¼ Asþ v; ð1Þ
where A is an M � N mixing matrix. The vector v represents the
additive random noise. Since A is typically unknown, finding the
EPR sources signals s from the observed mixture y can be consid-
ered a BSS problem described in the introduction of this paper.

Eq. (1) is in fact only an instantaneous mixture model. In reality,
we need a generalized version, where each source and observed
mixture is a length L signal. In that case, the length-M vector y be-
comes a matrix Y of size M � L; the length-N vector s becomes a
matrix S of size N � L; and the length-M vector v becomes a matrix
V of size M � L. The mixing model is then

Y ¼ ASþ V: ð2Þ
The small letters corresponding to these matrices will be used to
denote the individual entries. For example, snl would the nth row
and lth column of the matrix S, which is the value of the source
sn at time l.

In solving the BSS for the EPR signal, it is safe to make the fol-
lowing four assumptions:

1. There are more mixtures than sources, i.e., M P N. In other
words, we have an overdetermined system of equations. Also,
A is of full column rank.

2. The mixing matrix has unit row sum, i.e.,
PN

n¼1amn ¼ 1. There-
fore, the average intensity of the sources is preserved in the
mixtures.

3. All sources are non-negative, i.e., snl P 0.
4. The source signals to be separated satisfy local dominance [18].

In other words, for each source we can always find at least one
time point with the property that only this sources is large
while the other sources are approximately zero. we can com-
pute the local dominance jn0 for source sn0 by

jn0 ¼max
l

sn0 lPN
n¼1;n–n0snl

 !
: ð3Þ

This value should be large for all sources in our EPR signals.

Consequent to assumption (4) above, EPR source signals are of-
ten considered to be approximately sparse. We can also say that
EPR signals have high contrast. In other words, many entries of
snl are close to zero, and the energy of the source concentrates on
a few nonzero entries. On the other hand, the data are not strictly
sparse because there are often residual signals at other sources
even when they are dominated by another one. As we will see
more clearly in the experimental section, our method is capable
of handling this ‘‘approximately sparse” BSS.

2.1. Diversity measure

Assume for the time being that we have a strictly sparse set of
EPR signals. We can then retrieve the EPR sources from the mix-
tures by solving the following optimization problem:

minimize
1
2
kY� ASk2

F þ kEð0ÞðSÞ

subject to S � 0 ð4Þ
XN

n¼1

amn ¼ 1;



Table 1
The alternating minimization method based on diversity measure minimization.

Step (1) Initialization
� K
� p
� A

� S AyY

Step (2) For k ¼ 1;2; . . . ;K
For n ¼ 1;2; . . . ;N
� Compute the residual Rn using Eq. (8)
� Estimate sn using the iterative Eq. (14)
� Estimate an using the iterative Eq. (15)
� Enforce the constraint given in Eq. (16)

� If sðkÞnl < 0, then set sðkÞnl ¼ 10�9; else, go to Step 3

Step (3) k kþ 1

Step (4) If k > K , return; else, go to Step 2
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where k is a regularization parameter balancing data fidelity and
sensitivity to noise [19], and k � kF is the Frobenius norm [20]. The
inequality � denotes component-wise greater than or equal to.
The function Eð0ÞðSÞ is used to denote an ‘‘‘0 norm” of the matrix,
which counts the number of nonzero terms in S.

It is known that finding a global solution to an ‘0 norm minimi-
zation requires a combinatorial search, which is computationally
unattractive [21]. Instead, we can use an ‘1 norm minimization
by substituting Eð0ÞðSÞ by Eð1ÞðSÞ in Eq. (4) and leaving all other
terms intact, where

Eð1ÞðSÞ ¼
XN

n¼1

XL

l¼1

jsnlj:

The efficiency of ‘1 norm minimization is explored in [22], and re-
cent research has looked into finding conditions where the substitu-
tion gives the same solutions [23].

There are however two reasons why one should also explore the
‘p norm, with 0 < p < 1. First, it is differentiable everywhere while
‘1 norm is not differentiable at the origin. Second, it can give a
more sparse solution, as p gets smaller [24]. Thus, ‘p norm prom-
ises to be a practical compromise between sparseness of the solu-
tion and solvability in a reasonable amount of time. Note also that
the ‘p norm is also called a diversity measure. In this nomenclature,
‘‘diversity” refers to the lack of sparsity, or anti-sparsity. When
sources are sparse, minimizing the diversity (anti-sparsity) is
equivalent to maximizing the concentration (sparsity), which is
the basis of compressive sensing [25–27].

Here, we define the diversity measure of S as

EðpÞðSÞ ¼
XN

n¼1

XL

l¼1

jsnljp: ð5Þ

As p approaches zero, the diversity measure provides a count of the
number of nonzero entries in S. Using diversity measure minimiza-
tion leads to the following optimization problem

minimize
1
2
kY� ASk2

F þ kEðpÞðSÞ

subject to S � 0 ð6Þ
XN

n¼1

amn ¼ 1;

which we will solve in the next section.

2.2. Solving the non-negative BSS

The product AS can be alternatively written as follows. Let us
denote the entire length-L signal from source sn as sT

n; mathemati-
cally, this equals the nth row of S put in a column format. In addi-
tion, we denote the nth column of the matrix A as an. With these,
AS can be written as [20]

AS ¼
XN

n¼1

ansT
n: ð7Þ

Based on this decomposition, we propose an alternating minimiza-
tion algorithm to estimate the unknowns iteratively, one term at a
time. We define the qth residual as

Rq ¼ Y�
XN

n¼1;n–q

ansT
n; ð8Þ

which is the part of the data Y not explained by the component ansn.
Thus, estimating sn assuming that A and sq (for q–n) are fixed leads
to the component-wise optimization problem
minimize
1
2
kRn � ansT

nk
2
F þ kEðpÞðsnÞ

subject to sn � 0 ð9Þ
XN

n¼1

amn ¼ 1:

To solve Eq. (9), a fixed-point algorithm using alternating minimiza-
tion can be derived. We set the derivative of its objective function
with respect to sn to be zero, i.e.,

@

@sn

1
2

Rn � ansT
n

�� ��2

F þ kEðpÞðsnÞ
� �

¼ 0: ð10Þ

This gives the Karush–Kuhn–Tucker (KKT) condition

� RT
nan þ kank2

2sn þ kpDðsnÞp�1sgnðsnÞ ¼ 0 ð11Þ
sn � 0 ð12Þ
XN

n¼1

amn ¼ 1; ð13Þ

where sgnð�Þ is the signum function, and k � k2 is the ‘2 norm. The
matrix DðsnÞ is a diagonal matrix of size L� L where the diagonal
entries are given by sn.

From Eqs. (11) and (12), we can compute sn using the following
iterative procedure:

sðkþ1Þ
n ¼ RT

nan � kpDðsnÞp�1sgnðsnÞ
kaðkÞn k2

2

; ð14Þ

where the superscript k ¼ 1;2; . . . ;K denotes the iteration step.
After obtaining an estimate of sn, we fix faqgq–n and S, and update
the column an from a least-squares estimate

aðkþ1Þ
n ¼ Rn

ksT
nk

2
2

sT
n; ð15Þ

which is further scaled to meet the following constraint that

XN

n¼1

aðkþ1Þ
mn ¼ 1: ð16Þ

The Eqs. (14)–(16) are the three main iterative steps in our algo-
rithm. We summarize it in Table 1.

2.3. Parameter selection in our approach

The first parameter to be determined in our algorithm is the
maximum iteration number K. Empirically, picking it between 50
and 100 leads to good convergence. Beyond this point, we have
not observed any substantial improvement to the source separa-



Table 2
The parameters in the three periodic Gaussian source signals.

Source signal bn sn (s) rn (ms) Tn (s)

Source 1 1.0 0.1 12.50 1.00
Source 2 0.5 0.2 6.25 0.69
Source 3 0.7 0.2 2.50 0.80
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Fig. 2. The source signal separation results by t
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tion results. An alternative way is to terminate our iteration by set-
ting a threshold of estimation error [22].

Another parameter to be chosen is p in the ‘p norm. As men-
tioned earlier, a smaller p leads to a more sparse solution. How-
ever, the tradeoff is that the algorithm will have a higher
likelihood of getting trapped in a local minimum. In practice, val-
ues of p between 0.8 and 1 have been found to represent a good
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a periodic truncated Gaussian pulse.
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he four different methods for comparison.
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Fig. 4. The success rate of our method for different values of p.
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compromise between the speed of convergence and the quality of
the resulting sparse solution.

The mixing matrix A can be initialized with randomly generated
zero-mean and unit-variance Gaussian random variables. The ini-
tial source estimation can be given by S ¼ AyY, where Ay is the
Moore–Penrose pseudoinverse of A.

As for the regularization parameter k, we can determine it using
the traditional methods such as the modified L-curve [28]. This bal-
ances the need for a sparse solution and one that gives a small er-
ror with the observation.

3. Simulation results

In simulation with synthetic data, we can measure the accuracy
of our algorithm after computing the estimate of the sources by
comparing with the ‘‘real” S. Let S denote the estimate of the
sources at the Kth iteration, i.e., S ¼ SðKÞ. We define the correlation
error (CE) of the source signals as

CEijðS;SÞ ¼ 1� sT
i
�sj

ksikk�sjk
; ð17Þ

for i; j ¼ 1;2; . . . N. The cumulative correlation error (CCE) of the
source signals is then

CCEijðS; SÞ ¼
XN

i¼1

min
j

CEijðS;SÞ ¼
XN

i¼1

min
j

1� sT
i
�sj

ksikk�sjk

� �
: ð18Þ

This problem can be effectively solved by the Kuhn–Munkres algo-
rithm [29].

To gauge the performance of our algorithm, we compare results
with three existing non-negative BSS algorithms, i.e., CAMNS [18],
Table 3
The CCEs of the four non-negative BSS methods.

Scheme Experiment 1 Experiment 2
M ¼ 4;N ¼ 3 M ¼ 2;N ¼ 2

40 dB Noiseless 20 dB

Our method 0.0020 0.0013 0.081
CAMNS 0.0112 0.0064 0.139
NMFSC 0.0101 0.0121 0.115
nICA 0.0032 0.0520 0.175
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Fig. 3. The zoomed-in version of the first source signa
NMFSC [17], and nICA [14]. The regularization parameter is deter-
mined by the modified L-curve [28]. We also use K ¼ 100 and
p ¼ 0:8.

3.1. Example of mixture of three non-negative periodic signals
ðM ¼ 4;N ¼ 3Þ

In this test we use three synthetic sources that are designed to
be uncorrelated. The sources are labeled s1; s2 and s3. Each is a peri-
odic signal, where each period is a truncated Gaussian. In other
words, for source n, let bn be the peak, rn be the standard deviation
of the Gaussian pulse, and sn be the time shift of the first period.
The value of snl, within the first period, is then given by

snl ¼ bne
�ðl�sn Þ2

2r2
n : ð19Þ

This is repeated with a period of Tn. With signals that are 10 s long
at a sampling frequency of 250 Hz, the parameters used for the
three source signals are listed in Table 2 and the shapes of them
are depicted in Fig. 1.
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l separation results by the four different methods.
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The three source signals are combined using the mixing matrix
A, where

A ¼

0:5170 0:0866 0:3964
0:0033 0:4203 0:5764
0:8807 0:0301 0:0893
0:3953 0:2321 0:3746

2
6664

3
7775; ð20Þ

with a signal-to-noise ratio (SNR) at 40 dB. The source separation
results using our method are given in Fig. 2a–c. These are com-
pared with those from CAMNS in (d)–(f), NMFSC in (g)–(i), and
the nICA in (j)–(l). We can see that our method yields the best sep-
aration results among the four competing schemes visually. Fur-
thermore, in Table 3, the various methods are quantitatively
compared, using the CCE defined in Eq. (18). It substantiates our
claim that our method achieves the best signal separation results
for the simulated EPR signals. Additionally, in order to show the
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−4

−3

−2

−1

0

1

2

3

4

−

−

−

−

0 200 400 600 800 1000

0

10

20

30

40

50

60

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

Fig. 5. The two derivative, integrated
separated results clearly, we present a zoomed-in version of the
four methods in Fig. 3a–e.

Our analyses of why our method is superior to the competing
ones in this example is as follows. The maximum correlation
coefficient among the three signals is 0.073, so they are essen-
tially uncorrelated. As can be seen from Figs. 2 and 3, the nICA
method and our method give the most precise source separation
results, while the separation results of NMFSC and CAMNS are
slightly worse than the two former methods. As mentioned in
[17], the performance of NMFSC strongly depends on the prior
knowledge of the sparsity of the sources to be separated, which
is often unknown in general. Although CAMNS has good perfor-
mance in separating general sources that satisfy the local domi-
nance requirement, for the sources that are very sparse, i.e.,
when most parts of the sources are zero, its performance is poor
because the convex hull analysis is not satisfied. Meanwhile, nICA
is a classical method requiring assumption about independence
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among the sources. For coherent source signals, the performance
of nICA will degenerate substantially even for an overdetermined
system. This will be further confirmed for EPR signals in the next
simulation. In addition, compared with our method, CAMNS and
NMFSC take a longer time to reach a stationary point. The former
requires 1.704 s, the latter 7.463 s, compared with nICA which
uses 0.898 s and our method, which uses 0.020 s.
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Fig. 6. The EPR source signal separation
We can also define the success rate of non-negative BSS as the
percentage of trials in which the CCEs are less than a threshold,
say, 0.05. Fig. 4 depicts the succuss rates of our method under
different values of p with 100 independent trials. It can be seen
that the results are better when p is close to 1. On the other
hand, a lower value of p leads to faster convergence, but the
algorithm will have a higher likelihood of getting trapped in a lo-
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cal minimum. Overall, we pick p between 0.8 and 1 for a good
tradeoff between convergence and success rate.

3.2. Example of mixture of two non-negative EPR spectra data
ðM ¼ 2;N ¼ 2Þ

Here, we consider the mixing of two continuous non-negative
EPR spectra signals carefully captured experimentally in a labora-
tory so that each is as pure as possible. The two source EPR sig-
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Fig. 7. The EPR source signal s
nals used here are the same as reported in [7]. The EPR spectra
were measured with the help of the spin trap agent 5-(diethoxy-
phosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO). The spec-
tra of superoxide-DEPMPO and hydroxyl-DEPMPO measured
from chemical system are used as our source signals in this
study. The measured signals are first-derivative lines of EPR spec-
tra. All the signal intensities were digitalized to 1024
equidistant points for further processing, so the length of each
signal is 1024.
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To recover the original EPR spectra, we integrate their measured
first derivatives. The spectrum should be non-negative if the
response absorption is linear. In the presence of noise, the spec-
trum will inevitably have small negative values, particularly in
the baseline region, so we set those small negative values to zero
before simulating the mixed spectra. Due to some artifacts in the
derivation process during measurement, it is possible that the inte-
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Fig. 8. The EPR source signal s
grated spectra show an artifact of broad background under the
sharply resolved peaks. This background artifact can be removed
by a spline curve fitting. The measured first derivative of the two
EPR spectra, their integrations, and the artifact-removed integrated
spectra are shown in Fig. 5. It can be seen that the integrated spec-
tra are nearly non-negative almost everywhere, with exceptions in
the baseline region where some values are small and negative.
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After replacing these small negative values by zero, the source
signals satisfy the non-negativity requirement of our algorithm.
In fact, even if these small negative values are not replaced by zero,
our algorithm can still provide a very good result, showing good
robustness to slight violations to the non-negativity requirement.
We state that although the two source spectra are highly over-
lapped, the requirement of local dominance can still be approxi-
mately satisfied, since there are still distinct peaks for each
source spectra. At the distinct peaks of a source spectrum, it has
a dominant value over another one. To simulate the EPR spectra
of mixtures of free radicals superoxide and hydroxyl, the two arti-
fact-corrected integrated source EPR spectra are combined using
the mixing matrix

A ¼
0:4509 0:5491
0:7197 0:2803

� �
: ð21Þ

Fig. 6a and b give the source separation results of our method
under a noiseless scenario. These are compared with CAMNS in
(c) and (d), NMFSC in (e)and (f), and nICA in (g) and (h). Fig. 7 give
the corresponding results for a SNR of 20 dB. Their CCEs are tabu-
lated in Table 3.

The correlation coefficient between the two EPR signals is
0.7247, suggesting that they are not independent and, in fact,
highly coherent. In the noiseless scenario depicted in Fig. 6, the
waveforms of the EPR spectra are not definitive in distinguishing
the four methods. However, the CCEs tabulated in Table 3 shows
that CAMNS and our method have better performance than
NMFSC and nICA. On the other hand, at 20 dB, the performance
of CAMNS is worse than the other two methods. In fact, the sep-
arated signals contain negative values for some parts of the sig-
nals in both noiseless and noisy cases, which violates the non-
negativity constraint. Note also that the performance of CAMNS
degenerates as SNR decreases because the convex hull analysis
is increasingly not satisfied. Meanwhile, the performance of nICA
is the worst among the four methods because the assumption of
independence does not hold even for the noiseless scenario, and
it degrades heavily as the noise level increases. In comparison,
NMFSC and our method employ regularization and therefore
are more robust against noise.

We also plot the average CCEs of the four methods versus SNR
from 0 to 50 dB, with 100 independent trials, as shown in Fig. 9.
Our method has the smallest SNR for at various noise levels. Addi-
tionally, note that the EPR source signals we considered have a
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Fig. 9. The average CCEs of four different methods versus SNR with 100 indepen-
dent trials.
very small number of zero points, i.e., most parts of the signals
have nonzero amplitude, showing that even though the four meth-
ods are all designed for strictly sparse signal separations, ours
seems to outperform the competing schemes in separating EPR sig-
nals that are only approximately sparse. Further research can
probe into the mathematical reasons behind such superior
performance.

As seen from Figs. 6 and 7, for the real EPR spectra of free rad-
icals which have significant spectral overlap, our algorithm per-
forms perfectly when there is no noise and very well when there
is a high SNR of 20 dB. For a real in vivo EPR measurement of free
radicals, the SNR may be much lower than 20 dB. However, even
for a signal-to-noise ratio of 0 dB, meaning the noise energy is
equal to the signal energy, our algorithm can still give a reasonably
good separation with an average CCE equal to 0.2, as shown in
Fig. 9. A typical separation result for the case of 0 dB is shown in
Fig. 8.
4. Conclusion

This paper addresses the problem of blind separation of EPR
data based on diversity measure minimization. A fixed-point alter-
nating minimization algorithm is derived to separate the EPR
source signals from linear instantaneous mixtures. We demon-
strate that the proposed method can work well for signals that
are not exactly sparse, but only have small amplitudes in most of
the data points, which is typical in practice.
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